
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 11 | Nov -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 1

Comprehensive study on 8/12-bit Cyclic Redundancy Check

Neelanjan Goswami1, Moka Saicharan2, Mohd Ahmed Siddique3, Sudarshan Kumar4

1,2,3,4 Department of Electronics and Communication Engineering, Bangalore Institute of Technology

---***---
Abstract - Our understanding of Cyclic Redundancy Check

mainly revolves around the operation performed on bits of

data to be used in various stages of communication and many

other applications to check the accuracy of the bits received.

Cyclic Redundancy Check (CRC) is that very

device/operation performed on cyclic codes of binary data to

check the accuracy (validity) of bits received at any stage after

transmission i.e. whether the bits received, match/correspond

to the bits transmitted from a transmitter through a channel.

The operation which brings this checking mechanism into

reality was first analysed. This operation required to add

certain additional bits (check bits) at the end of the message.

Once added, it was added/XOR’ed with the bits of generator

polynomial appropriately. The generation of these certain

check bits which now represent a unique sequence of 0s and

1s was constructed in the form of a Verilog Code through the

use of required statements accordingly as and when required.

In this paper, the language chosen for CRC synthesis is

Verilog and the RTL Schematic and Technology View of the

code has been displayed along with the CRC output

waveforms. Message bits along with the CRC output too has

been shown which verifies the CRC check bits and their

operation.

Key Words: Redundancy, MSB, XOR, Checking mechanism

Message and Check Bits

1.INTRODUCTION

A cyclic redundancy check (CRC) is a code which

identifies errors that are commonly used in digital networks
and storage devices to detect unintended changes to raw data.
CRCs are named because of the consistency of the test (data
verification) value (it extends the message without adding
information) and the algorithm is based on cyclic codes. CRCs
are popular because they are simple to implement in binary
hardware, easy to analyse mathematically, and especially good
for detecting common noise-related transmission channel
errors. Since the check value has a fixed length, the function
that generates it is sometimes used as a hash function.

The CRC was invented by W. Wesley Peterson, 1961; a
32-bit CRC feature, being used Ethernet and several other
protocols, is the result of a group of researchers and was
documented in 1975.

The CRCs are based on the notion of cyclic error-codes
correction. W first formulated the use of systematic cyclic
codes that encode messages by adding a fixed-length check
value for detecting errors in communication networks., was
first proposed by W. Wesley Peterson in 1961.

Cyclic codes are not always simple to implement but have
the benefit of becoming ideally suited for the detection of burst

errors: contiguous sequences of invalid data symbols in
messages. This is crucial as burst errors are common
transmission errors in several modes of communication, which
includes magnetic or optical storage devices.

The n-bit CRC implemented inside an arbitrary length data
block detects any single error burst not over n bits, and the
fraction of any longer error bursts that it will detect is (1 – 2 −
n).

2. CRC operations

2.1. Working of a basic CRC

Specifying a CRC code involves the interpretation of a so-

called polynomial generator. This polynomial is the divisor in

a long division of polynomials, which takes the message as the

dividend and discards the quotient and transforms the

remainder into the product. The important caveat is that the

polynomial coefficients are calculated on the basis of a finite

field arithmetic (Binary calculations), so that the addition

operation can always be performed bitwise-parallel (there is no

carry between digits).

Throughout reality, all widely used CRCs employ two

components commonly named 0 and 1 that suit comfortably

the device architecture.

A n-bit CRC is considered a CRC if its check value is n bits

wide. Multiple CRCs are possible for a given n, with each one

having a different polynomial. Such a polynomial has the

highest degree n, meaning it has terms n + 1. In other words,

the polynomial has a n + 1 length; its encoding takes n + 1 bits.

Remember that most specifications of polynomials either drop

MSB or LSB, as they are still 1.

The easiest system which detects error, the parity bit, is

really a 1-bit CRC which utilizes the x + 1 polynomial

generator (two terms) and also has the name CRC-1.

2.2. Functionality of CRC

CRC-enabled device computes a short, fixed-length binary
sequence, recognized as the check value or CRC, for each
block of data being sent or stored and appends it to the data,
forming a codeword.

2.3. Mechanism of CRC

When a device receives or reads a codeword, it either
compares its check value to a value that has been newly
determined from the data block, or performs a CRC on an
equivalent basis on the entire codeword and compares the
resulting check value with the predicted residue constant. If the

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 11 | Nov -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 2

values for the CRC do not match, then there is a data error in
the block.

The app may take corrective steps, such as re-reading the block
or asking it to be forwarded again. Therefore, the data is
believed to be error-free (though it can contain undetected
errors with a limited likelihood; this is inherent in the essence
of error checking).

2.4. Computation of CRC codeword (Division algorithm used)

Calculation of the n-bit binary CRC requires to line the bits

that represent the input in a row and also to place the (n + 1)-

bit pattern that represents the CRC divisor (called the

"polynomial") below the left end of the row.

In this instance, we encode 14 bits of a 3-bit CRC message

with a polynomial x3 + x + 1. The polynomial is expressed in

binary as a coefficient; the third-degree polynomial has four

coefficients (1x3 + 0x2 + 1x + 1). In this case, the coefficients

are 1, 0, 1 and 1. The outcome of the calculation is 3 bits long.

Start with the message to be encoded:

11010011101100

It is first padded with zeros corresponding to the length of bit n

of the CRC. This is achieved in such a way that the resulting

code word is in structured form. Here is the first computation

for the 3-bit CRC:

2.4.1. Pre-computation

11010011101100 000 <--- input right padded by 3 bits

1011 <--- divisor (4 bits) = x³ + x + 1

01100011101100 000 <--- result

In each step, the algorithm acts on the bits directly above the

divider. The result of this iterative process is the bitwise XOR

of the polynomial divider with the bits above it. For this stage,

the bits not above the divisor are merely copied directly below.

The divisor is then moved one bit to the right, and now the

process is repeated until the divisor reaches the right end of the

source row.

 a + b =  (1)

2.4.2. Calculation

Here is the entire calculation:

Long Division: -

11010011101100 000 (A)

1011 (B)

01100011101100 000 (C)

01011

00111011101100 000

001011

00010111101100 000

0001011

00000001101100 000 (D)

00000001011

00000000110100 000

000000001011

00000000011000 000

0000000001011

00000000001110 000

00000000001011

00000000000101 000

00000000000101 1

00000000000000 100 (E)

(A) <--- input with check value

(B) <--- divisor

(C) <--- result (note the first four bits are the XOR with the
divisor beneath, the rest are unchanged)

(D) <--- note that the divisor moves over to align with the
next 1 in the dividend, the rest are unchanged in other words, it
doesn't necessarily move one per iteration

(E) <--- remainder (3 bits).

Division algorithm terminates here as the dividend is equal
to zero. Although the leftmost bit of the divisor has zeroed
each bit of input it has touched, only other bits in the input row
that can be null are now the n bits on the right end of the row.
Such n bits are now the remainder of the division step, which
will also be the evaluation of the CRC function (except if any
of the chosen CRC specification is requested for post-
processing).

2.4.3. Post-Calculation

Long Division: -

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 11 | Nov -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 3

11010011101100 100 (A)

1011 (B)

01100011101100 100 (C)

01011

00111011101100 100

001011

00010111101100 100

0001011

00000001101100 100

00000001011

00000000110100 100

000000001011

00000000011000 100

0000000001011

00000000001110 100

00000000001011

00000000000101 100

00000000000101 1

00000000000000 000 (D)

(A) <--- input with check value

(B) <--- divisor

(C) <--- result

(D) <--- remainder

3. Model Code based on above example
3.1. Verilog Code

module crc(msg,gp,crcf);

input [13:0]msg;

input [3:0]gp;

output [16:0]crcf;

reg [16:0]rem;

integer i,b,cnt=0;

always@(msg or gp)

begin

cnt=0;

for(i=16;i>=0;i=i-1)

begin

if(i<3)

rem[i]=1'b0;

else

rem[i]=msg[i-3];

end

begin: blk

for(i=16;i>=3;i=i-1)

begin

if(rem[i])

begin

b=i;

disable blk;

end

end

end

end

always@(cnt)

begin: blk2

for(i=16;i>=3;i=i-1)

begin

if(rem[i]==1'b1)

begin

b=i;

disable blk2;

end

end

end

always@(b)

begin: blk3

if(rem[16-:14]==14'b00_0000_0000_0000)

disable blk3;

else

begin

rem[b-:4]=rem[b-:4]^gp[3:0];

cnt=cnt+1;

end

end

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 11 | Nov -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 4

assign crcf[16-:14]=msg[13-:14];

assign crcf[2:0]=rem[2:0];

endmodule

3.2. Modelsim output waveform

Figure 1. Model code output waveform.

In the above simulation, msg is the message input

coefficients = 11010011101100

gp is the generator polynomial coefficients = 1011

crcf is the message input appended with the check bits or

check value (3 bits) = 11010011101100 100

4. VERILOG code for 8 bit /12 bit

Redundancy Check

Since in the computation example we used a 14-bit message

input for encoding and a 3rd degree generator polynomial (i.e.

4-bit generator polynomial), for the actual implementation of

an 8 bit or a 12-bit cyclic redundancy check we need to choose

a 9 bit and 13-bit generator polynomial coefficients input

respectively. Hence the above code is modified accordingly for

a 9 bit or a 13-bit generator polynomial input along with a 16-

bit message input as shown below:

4.1. Verilog Code

module crc(msg,gp,crcf);

input [15:0]msg; /* 16 bit message input */

/* [12:0] to be used for a 13-bit generator polynomial (12 bit

CRC) output [23:0] crcf; /* 16 + (8-1) = 23 bit CRC output for

an 8 bit CRC and 16 + (12-1) = 27 bit CRC output for a 12 bit

CRC */

input [8:0]gp;

reg [23:0]rem;

/* Appending zeroes at the end of the message input */

integer i,b,cnt=0;

integer i,b,cnt=0;

always@(msg or gp)

begin

cnt=0;

for(i=23;i>=0;i=i-1) /* i=27 for a 12 bit CRC */

begin

if(i<8) /* i<12 for a 12 bit CRC */

rem[i]=1'b0;

else

rem[i]=msg[i-8]; /* [i-12] for a 12 bit CRC */

end

begin: blk

for(i=23;i>=8;i=i-1) /* i=27;i>=12 for a 12 bit CRC */

begin

if(rem[i])

begin

b=i;

disable blk;

end

end

end

end

/* Finding the position of logic 1 bit (i.e. b) from left of

appended message */

always@(cnt)

begin: blk2

for(i=23;i>=8;i=i-1)

begin

/* i=27;i>=12 for a 12 bit CRC */

if(rem[i])

begin

b=i;

disable blk2;

end

end

end

/* Performing bitwise XOR */

always@(b)

begin: blk3

if(rem[23-:16]==16'b0) /* rem[27-:16] for 12 bit

CRC */

disable blk3;

else

begin

rem[b-:9]=rem[b-:9]^gp[8:0];

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 11 | Nov -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 5

/*rem[b-:13], gp[12:0] for a 12 bit CRC*/

cnt=cnt+1;

end

end

assign crcf[23-:16]=msg[15-:16]; /*crcf[27-:16] for a 12 bit

CRC */

assign crcf[7:0]=rem[7:0];

endmodule

4.2. Modelsim output Waveform

Figure 2. Verilog code output waveform.

In the above output,

• gp (generator polynomial – 8th degree (9 bits))

 = 1x8 + 0x7 + 1x6 + 1x5 + 1x4 + 1x3 + 0x2 + 1x1 + 1x0

 = 101111011

• msg (input message coefficients – 16 bit) =

1101001110110010

• rem(remainder) = 0000000000000000 11000001

• crcf (CRC output i.e. input message appended with

rem (check bits))

= 1101001110110010 11000001

5. Analytical Solution

1101001110110010 00000000 (A)

101111011 (B)

0110111000110010 00000000 (C)

0101111011

0011000011110010 00000000

00101111011

0001111110010010 00000000

000101111011

0000100000100010 00000000

0000101111011

0000001111111010 00000000

000000101111011

0000000100001100 00000000

0000000101111011

0000000001110111 00000000

0000000001011110 11

0000000000101001 11000000

 101111 011

0000000000000110 10100000

0000000000000101 111011

0000000000000011 01001100

0000000000000010 1111011

0000000000000001 10111010

0000000000000001 01111011

0000000000000000 11000001 (D)

Remainder (Check Bits) = 11000001

(A) Message with zero padding

(B) gp

(C)Message xor gp

(D)Remainder

CRC encoded output =

 1101001110110010 11000001

 Message bits Check Bits

6. CRC WITH Error Verification Using

Remainder

6.1. Verilog Code

/*

 working:

 1.) obtaining check bit for given msg input

 2.) passing message without error and verifying

 3.) passing message with error and verifying

 4.) assigning a new signal output=

0; if no error

1; if error

1010101010101100

101111011

*/

module

crc(msg,msg_retrieved,gp,crcf_msg,crcf_retrieved,error);

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 11 | Nov -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 6

 input [15:0]msg;

 input [15:0]msg_retrieved;

 output error;

 reg error;

/* 16 bit message input */

 input [8:0]gp;

/*using same gp for msg and msg_retrieved

[12:0] to be used for a 13 bit generator polynomial(12 bit

CRC) */

 output [23:0]crcf_msg;

 output [23:0]crcf_retrieved;

/* 16 + (8-1) = 23 bit CRC output for an 8 bit CRC and 6 +

(12-1) = 27 bit CRC output for a 12 bit CRC */

 reg [23:0]rem;

 reg [23:0]rem1;

 integer i,b,cnt=0,cnt1=0;

/*Appending zeroes at the end of the message input */

 always@(msg or gp)

 begin

 cnt=0;

 for(i=23;i>=0;i=i-1)

/* i=27 for a 12 bit CRC */

 begin if(i<8)

/* i<12 for a 12 bit CRC */

 rem[i]=1'b0;

 else rem[i]=msg[i-8];

/* [i-12] for a 12 bit CRC */

 cnt=cnt+1;

 end

 end

/* Finding the position of logic 1 bit (i.e. b) from left of

appended message */

 always@(cnt)

 begin: blk1

 for(i=23;i>=8;i=i-1)

 begin

/* i=27;i>=12 for a 12 bit CRC */

 if(rem[i])

 begin b=i;

 disable blk1;

 end

 end

 end

/* Performing bitwise XOR */

always@(b)

begin: blk2

 if(rem[23-:16]==16'b0)

/* rem[27-:16] for 12 bit CRC */

 disable blk2;

 else

 begin rem[b-:9]=rem[b-:9]^gp[8:0];

/* rem[b-:13], gp[12:0] for a 12 bit CRC*/

 cnt=cnt+1;

 end

 end

assign crcf_msg[23-:16]=msg[15:16];

/*crcf[27-:16] for a 12 bit CRC */

assign crcf_msg[7:0]=rem[7:0];

/*same process for msg_retrieved

Appending zeroes at the end of the message input */

 always@(msg_retrieved or gp)

 begin

 cnt1=0;

 for(i=23;i>=0;i=i-1)

/* i=27 for a 12 bit CRC */

 begin

 if(i<8)

 rem1[i]=rem[i];

 else

 begin

 rem1[i]=msg_retrieved[i-8];

/* [i-12] for a 12 bit CRC */ cnt1=cnt1+1;

 end

 end

 end

/* Finding the position of logic 1 bit (i.e. b) from left of

appended message */

always@(cnt1)

begin: blk3

for(i=23;i>=8;i=i-1)

begin

/* i=27;i>=12 for a 12 bit CRC */

if(rem1[i])

begin b=i;

disable blk3;

end

end

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 11 | Nov -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 7

end

/* Performing bitwise XOR */

always@(b)

begin: blk4

 if(rem1[23:0]==24'b0)

/* rem[27-:16] for 12 bit CRC */

 disable blk4;

 else if(b>=8)

 begin rem1[b-:9]=rem1[b-:9]^gp[8:0];

/* rem[b-:13], gp[12:0] for a 12 bit CRC*/

 cnt1=cnt1+1;

 end

 end

 assign crcf_retrieved[23-:16]=msg_retrieved[15-:16];

/*crcf[27-:16] for a 12 bit CRC */

assign crcf_retrieved[7:0]=rem1[7:0];

/*Error verification*/

always@(crcf_msg & crcf_retrieved)

begin

if(rem1[23:0]!=24'b0)

assign error=1;

else

assign error=0;

end

endmodule

6.2. Modelsim output Waveforms

Figure 3. Verilog code output waveform with no error in

message received variable

Figure 4. Verilog code output waveform with Error in

received message, last 3 bits as 111 instead of 010

7. Obtaining RTL Schematic

RTL schematic cannot be formed when a variable which is

not pre-initialized cannot have an operation upon itself. Here

the ‘rem’ variable is being used in initialization in the first

always block {always (msg, gp)}, ‘rem=msg[i-8]’ and in the

next always block below it, i.e. (always@(b), ‘rem[b-:9]

=rem[b-:9] ^gp [8:0]’. Since all always blocks run parallel, the

RTL designer gives an error as rem is not initialized “rem<23>

is already riven by msg <15>”

To overcome this problem, we used to variables of net and

reg datatype. The output variable would be of reg type and the

other would be net type.

7.1. Code A: Simpler Verilog code

module crc(msg,gp,crf);

input [15:0]msg; // 16bit i/p

input [8:0]gp; // 8 bit crc

output [23:0] crf; // 16+9-1 = 24 bits

//reg [23:0] crcf;

wire [23:0] crcf;

reg [8:0] rem;

integer i,cnt,b,c,ct;

reg [23:0] a;

// appending zeros

always @ (msg,gp)

begin

for(i=23;i>=0;i=i-1)

begin

if(i>8)

a[i] = msg[(i-8)];

else

a[i] = 0;

end

end

//finding leftmost 1 and then find no. of xors and xor it

always @ (msg,gp)

begin : blk1

c=23; // c is 1 leftmost

for(i=23;i>=0;i=i-1)

begin : blk3

if(a[i])

begin:blk2

for(cnt=0;cnt<=14;cnt=cnt+1)

begin

if(cnt==(c-8))

disable blk2;

b=c;

rem = a[b-:9]^gp[8:0];

b=b-1;

end

end

c=c-1;

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 11 | Nov -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 8

if(c<=8)

disable blk1;

end

end

assign crcf[23:9]=msg[15:0];

assign crcf[8:0]=rem[8:0];

assign crf = crcf;

endmodule

The drawback of above code: But this code runs for finite

number of times. To make it more volatile and reduce its

computation time, we may change the code as following:

7.2. Code B: Adaptive Verilog code for CRC

`timescale 1ns / 1ps

//

// Company: Bangalore Institute of Technology

// Engineer: Neelanjan Goswami, Moka Saicharan & Mohd

Ahmed Siddique

//

// Create Date: 17:39:46 03/26/2020

// Design Name: CRC

// Module Name: crc (Cyclic Redundancy Check)

// Project Name: CRC

// Target Devices:

// Tool versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

// NEELANJAN, SAICHARAN AND AHMED

//

module crc(msg,gp,crf);

input [15:0]msg; // 16bit i/p

input [8:0]gp; // 8 bit crc

output [23:0] crf; // 16+9-1 = 24 bits

//reg [23:0] crcf;

wire [23:0] crcf;

reg [8:0] rem;

integer i,cnt,b,c,ct;

reg [23:0] a;

// appending zeros

always @ (msg,gp)

begin

for(i=23;i>=0;i=i-1)

begin

if(i>8)

a[i] = msg[(i-8)];

else

a[i] = 0;

end

/*Finding 1, then XORing with gp, till 9th bit*/

for(i=23;i>=8;i=i-1)

begin

if(a[i])

begin

a[i-:9]=a[i-:9]^gp[8:0];

end

end

end

assign crcf[23-:16]=msg[15:0];

assign crcf[7:0]=a[7:0];

assign crf = crcf;

endmodule

8. Schematics

8.1. RTL Schematic

Code A: -

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 11 | Nov -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 9

Code B: -

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 11 | Nov -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 10

8.2. Technology Schematic

Code B:

Code A:

Simplification: -

For scaling down, a 2-bit CRC’s schematics too are shown: -

i.e. 5-bit Message bits and 3-bit Check bits

8.3. RTL Schematic

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 11 | Nov -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 11

8.4. Technology Schematic

9. Applications

1. A multiple bits error correction method based on

cyclic redundancy check codes.

2. In the RFID system, the application of error

correction.

3. Detection and recovery of memory-resident

corrupted data of mobile communication billing

system based on cyclic redundancy check.

4. Enhanced error correction for satellite navigation

message based on CRC codes.

5. Study of CRC-p Code Efficiency and Evaluation of

Optimal CRC Code for VHF Maritime Ad-hoc

wireless network communications.

10. CONCLUSIONS

A Verilog code for an 8/12-bit cyclic redundancy check was

created and tested. This code could also be extended for any

number bit cyclic redundancy check by changing the bit size

of registers taken as message input and generator polynomial

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 11 | Nov -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com | Page 12

in the Verilog code. Different versions of the Verilog code for

the same were also provided that could be used appropriately

by the designer/student. Our study mainly emphasizes on

bringing the operation of a CRC (Cyclic Redundancy Check)

onto a hardware by writing a Verilog code that performs that

very operation. The code was then translated into a basic

circuit level representation with the use of RTL (Register

Transfer Level) tools provided by Xilinx. Our study and code

may or may not be the most efficient or compact hardware for

a CRC but was rather done to make the viewers reading this

paper understand the simplicity and the use of basic Verilog

language to bring any real-life hardware/circuit for any kind

of operation/application into reality. Software like Xilinx

provide an easy to understand interface and variety of options

to execute and implement any given Verilog code through

simulations and RTL schematics respectively. They have

single handedly brought the time and expense required to

create any hardware/electronic circuits through the use of

popular and easy to understand languages like Verilog, VHDL

and technologies like RTL. Our main motive through this

paper is to show this very creation of a CRC circuit/hardware

through the steps we followed:

• Starting by understanding the need and the essence

of this hardware,

• Analyzing the operation performed by this hardware,

• Preparing a model code with the use of simple

Verilog statements,

• Generalizing the code and making it more flexible,

• Testing it through simulations (provided by

ModelSim),

• Finally bringing the hardware into reality through the

use of RTL technology.

11. System Configuration

ACKNOWLEDGEMENT

The paper and the work behind it would not have been poss

ible without the outstanding guidance of my supervisor, Dr.

A. B. Kalpana. Her enthusiasm, knowledge and exacting

attention to detail have been an inspiration and kept my work

on track from my first encounter with Verilog coding to the

final draft of this paper. Dr. Sree Ranga Raju M. N., my

professor at Bangalore Institute of Technology, have also

looked over my transcriptions and answered with unfailing

patience numerous questions about the hardware description

language and semantics. I am also grateful for the insightful

comments offered by the anonymous peer reviewers at my

college’s research block. The generosity and expertise of one

and all have improved this study in innumerable ways and

saved me from many errors; those that inevitably remain are

entirely my own responsibility.

REFERENCES

1. Samir Palnitkar, ―Verilog HDL: A Guide to Digital Design and

Synthesis”, Pearson Education, Second Edition.

2. Kevin Skahill, ―VHDL for Programmable Logic‖, PHI/Pearson

education, 2006.I. S. Jacobs and C. P. Bean, “Fine particles, thin

films and exchange anisotropy,” in Magnetism, vol. III, G. T.

Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271–

350.

3. Donald E. Thomas, Philip R. Moorby, ―The Verilog Hardware

Description Language, Springer Science+Business Media, LLC,

Fifth edition.R. Nicole, “Title of paper with only first word

capitalized,” J. Name Stand. Abbrev., in press.

4. Michael D. Ciletti, ―Advanced Digital Design with the Verilog

HDL Pearson (Prentice Hall), Second edition.M. Young, The

Technical Writer's Handbook. Mill Valley, CA: University

Science, 198.

5. Padmanabhan, Tripura Sundari, ―Design through Verilog HDL,

Wiley, 2016 Kass, R. E. and A. E. Raftery (1995). Bayes Factors.

Journal of the American Statistical Association 90, 773–794.

6. The Verilog Hardware Description Language by Thomas, D . E . /

Moorby, Philip R ., Fourth Edition, Published by Kluwer

Academic Publishers, date Published: 05/1998, ISBN:

0792381661.

7. Burns C (1996) An architecture for a Verilog hardware

accelerator. In: Proceedings of the IEEE international Verilog

HDL conference.

8. Charlton C, Jackson D, Leng PH, Russell PC (1990) Modelling

circuit delays in a demand driven simulator. Comput Electr Eng

20(4):309.

9. Cummings CE (2000) Nonblocking assignments in Verilog

Synthesis, coding styles that kill! Synopsys User Group, San Jose

(SNUG).

10. Gordon M (1995) The semantic challenge of Verilog HDL 1995.

In: Proceedings of the 10th annual IEEE symposium on logic in

computer science (LICS).

11. M. Ahmad, “Importance of Modeling and Simulation of

Materials in Research”, J. Mod. Sim. Mater., vol. 1, no. 1, pp. 1-2,

Jan. 2018. DOI: https://doi.org/10.21467/jmsm.1.1.1-2

http://www.ijsrem.com/

