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Abstract - Our understanding of Cyclic Redundancy Check 

mainly revolves around the operation performed on bits of 

data to be used in various stages of communication and many 

other applications to check the accuracy of the bits received. 

Cyclic Redundancy Check (CRC) is that very 

device/operation performed on cyclic codes of binary data to 

check the accuracy (validity) of bits received at any stage after 

transmission i.e. whether the bits received, match/correspond 

to the bits transmitted from a transmitter through a channel. 

The operation which brings this checking mechanism into 

reality was first analysed. This operation required to add 

certain additional bits (check bits) at the end of the message. 

Once added, it was added/XOR’ed with the bits of generator 

polynomial appropriately. The generation of these certain 

check bits which now represent a unique sequence of 0s and 

1s was constructed in the form of a Verilog Code through the 

use of required statements accordingly as and when required. 

In this paper, the language chosen for CRC synthesis is 

Verilog and the RTL Schematic and Technology View of the 

code has been displayed along with the CRC output 

waveforms. Message bits along with the CRC output too has 

been shown which verifies the CRC check bits and their 

operation. 
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1.INTRODUCTION 

 
A cyclic redundancy check (CRC) is a code which 

identifies errors that are commonly used in digital networks 
and storage devices to detect unintended changes to raw data. 
CRCs are named because of the consistency of the test (data 
verification) value (it extends the message without adding 
information) and the algorithm is based on cyclic codes. CRCs 
are popular because they are simple to implement in binary 
hardware, easy to analyse mathematically, and especially good 
for detecting common noise-related transmission channel 
errors. Since the check value has a fixed length, the function 
that generates it is sometimes used as a hash function. 

The CRC was invented by W. Wesley Peterson, 1961; a 
32-bit CRC feature, being used Ethernet and several other 
protocols, is the result of a group of researchers and was 
documented in 1975.  

The CRCs are based on the notion of cyclic error-codes 
correction. W first formulated the use of systematic cyclic 
codes that encode messages by adding a fixed-length check 
value for detecting errors in communication networks., was 
first proposed by W. Wesley Peterson in 1961.  

Cyclic codes are not always simple to implement but have 
the benefit of becoming ideally suited for the detection of burst 

errors: contiguous sequences of invalid data symbols in 
messages. This is crucial as burst errors are common 
transmission errors in several modes of communication, which 
includes magnetic or optical storage devices.  

The n-bit CRC implemented inside an arbitrary length data 
block detects any single error burst not over n bits, and the 
fraction of any longer error bursts that it will detect is (1 – 2 − 
n).  

 

2. CRC operations 

2.1. Working of a basic CRC 

Specifying a CRC code involves the interpretation of a so-

called polynomial generator. This polynomial is the divisor in 

a long division of polynomials, which takes the message as the 

dividend and discards the quotient and transforms the 

remainder into the product. The important caveat is that the 

polynomial coefficients are calculated on the basis of a finite 

field arithmetic (Binary calculations), so that the addition 

operation can always be performed bitwise-parallel (there is no 

carry between digits).  

Throughout reality, all widely used CRCs employ two 

components commonly named 0 and 1 that suit comfortably 

the device architecture. 

 

A n-bit CRC is considered a CRC if its check value is n bits 

wide. Multiple CRCs are possible for a given n, with each one 

having a different polynomial. Such a polynomial has the 

highest degree n, meaning it has terms n + 1. In other words, 

the polynomial has a n + 1 length; its encoding takes n + 1 bits. 

Remember that most specifications of polynomials either drop 

MSB or LSB, as they are still 1.  

 

The easiest system which detects error, the parity bit, is 

really a 1-bit CRC which utilizes the x + 1 polynomial 

generator (two terms) and also has the name CRC-1. 

2.2. Functionality of CRC 

CRC-enabled device computes a short, fixed-length binary 
sequence, recognized as the check value or CRC, for each 
block of data being sent or stored and appends it to the data, 
forming a codeword. 

 

2.3. Mechanism of CRC 

When a device receives or reads a codeword, it either 
compares its check value to a value that has been newly 
determined from the data block, or performs a CRC on an 
equivalent basis on the entire codeword and compares the 
resulting check value with the predicted residue constant. If the 
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values for the CRC do not match, then there is a data error in 
the block.  

The app may take corrective steps, such as re-reading the block 
or asking it to be forwarded again. Therefore, the data is 
believed to be error-free (though it can contain undetected 
errors with a limited likelihood; this is inherent in the essence 
of error checking). 

2.4. Computation of CRC codeword (Division algorithm used) 

 

Calculation of the n-bit binary CRC requires to line the bits 

that represent the input in a row and also to place the (n + 1)-

bit pattern that represents the CRC divisor (called the 

"polynomial") below the left end of the row.  

In this instance, we encode 14 bits of a 3-bit CRC message 

with a polynomial x3 + x + 1. The polynomial is expressed in 

binary as a coefficient; the third-degree polynomial has four 

coefficients (1x3 + 0x2 + 1x + 1). In this case, the coefficients 

are 1, 0, 1 and 1. The outcome of the calculation is 3 bits long. 

 

Start with the message to be encoded: 

11010011101100 

It is first padded with zeros corresponding to the length of bit n 

of the CRC. This is achieved in such a way that the resulting 

code word is in structured form. Here is the first computation 

for the 3-bit CRC: 

2.4.1. Pre-computation 

 

11010011101100 000        <--- input right padded by 3 bits 

 

1011                                   <--- divisor (4 bits) = x³ + x + 1 

 

01100011101100 000        <--- result 

In each step, the algorithm acts on the bits directly above the 

divider. The result of this iterative process is the bitwise XOR 

of the polynomial divider with the bits above it. For this stage, 

the bits not above the divisor are merely copied directly below. 

The divisor is then moved one bit to the right, and now the 

process is repeated until the divisor reaches the right end of the 

source row. 

 a + b =  (1) 

 

2.4.2. Calculation 

Here is the entire calculation: 

 

Long Division: - 

 

11010011101100 000   (A) 

1011     (B)            

----------------------------- 

01100011101100 000   (C) 

01011               

----------------------------- 

00111011101100 000 

001011 

----------------------------- 

00010111101100 000 

0001011 

----------------------------- 

00000001101100 000   (D) 

00000001011            

----------------------------- 

00000000110100 000 

000000001011 

----------------------------- 

00000000011000 000 

0000000001011 

----------------------------- 

00000000001110 000 

00000000001011 

----------------------------- 

00000000000101 000 

00000000000101 1 

----------------------------- 

00000000000000 100   (E) 

----------------------------- 

 

(A) <--- input with check value 

(B) <--- divisor 

(C) <--- result (note the first four bits are the XOR with the 
divisor beneath, the rest are unchanged) 

(D)   <--- note that the divisor moves over to align with the 
next 1 in the dividend, the rest are unchanged in other words, it 
doesn't necessarily move one per iteration 

(E) <--- remainder (3 bits).  

 

Division algorithm terminates here as the dividend is equal 
to zero. Although the leftmost bit of the divisor has zeroed 
each bit of input it has touched, only other bits in the input row 
that can be null are now the n bits on the right end of the row. 
Such n bits are now the remainder of the division step, which 
will also be the evaluation of the CRC function (except if any 
of the chosen CRC specification is requested for post-
processing). 

 

2.4.3. Post-Calculation 

Long Division: - 
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11010011101100 100   (A) 

1011    (B) 

----------------------------- 

01100011101100 100   (C) 

01011               

----------------------------- 

00111011101100 100 

001011 

----------------------------- 

00010111101100 100 

0001011 

----------------------------- 

00000001101100 100 

00000001011 

----------------------------- 

00000000110100 100 

000000001011 

----------------------------- 

00000000011000 100 

0000000001011 

----------------------------- 

00000000001110 100 

00000000001011 

----------------------------- 

00000000000101 100 

00000000000101 1 

----------------------------- 

00000000000000 000  (D) 

----------------------------- 

(A) <--- input with check value 

(B) <--- divisor 

(C) <--- result 

(D) <--- remainder 

 

3. Model Code based on above example  
3.1. Verilog Code 

module crc(msg,gp,crcf); 

input [13:0]msg; 

input [3:0]gp; 

output [16:0]crcf; 

reg [16:0]rem; 

integer i,b,cnt=0; 

 

always@(msg or gp) 

begin 

cnt=0; 

for(i=16;i>=0;i=i-1) 

begin 

if(i<3) 

rem[i]=1'b0; 

else 

rem[i]=msg[i-3]; 

end 

begin: blk 

for(i=16;i>=3;i=i-1) 

begin 

if(rem[i]) 

begin 

b=i; 

disable blk; 

end 

end 

end 

end 

 

always@(cnt) 

begin: blk2 

for(i=16;i>=3;i=i-1) 

begin 

if(rem[i]==1'b1) 

begin 

b=i; 

disable blk2; 

end 

end 

end 

always@(b) 

begin: blk3 

if(rem[16-:14]==14'b00_0000_0000_0000) 

disable blk3; 

else 

begin 

rem[b-:4]=rem[b-:4]^gp[3:0]; 

cnt=cnt+1; 

end 

end 

http://www.ijsrem.com/
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assign crcf[16-:14]=msg[13-:14]; 

assign crcf[2:0]=rem[2:0]; 

endmodule 

 

3.2. Modelsim output waveform 

Figure 1. Model code output waveform. 

 

In the above simulation, msg is the message input 

coefficients = 11010011101100 

 

gp is the generator polynomial coefficients = 1011 

 

crcf is the message input appended with the check bits or 

check value (3 bits) = 11010011101100 100 

 

4. VERILOG code for 8 bit /12 bit 

Redundancy Check 

Since in the computation example we used a 14-bit message 

input for encoding and a 3rd degree generator polynomial (i.e. 

4-bit generator polynomial), for the actual implementation of 

an 8 bit or a 12-bit cyclic redundancy check we need to choose 

a 9 bit and 13-bit generator polynomial coefficients input 

respectively. Hence the above code is modified accordingly for 

a 9 bit or a 13-bit generator polynomial input along with a 16-

bit message input as shown below: 

 

 

 

 

4.1. Verilog Code 

module crc(msg,gp,crcf); 

 

input [15:0]msg;   /* 16 bit message input */ 

 

/* [12:0] to be used for a 13-bit generator polynomial (12 bit 

CRC) output [23:0] crcf; /* 16 + (8-1) = 23 bit CRC output for 

an 8 bit CRC and 16 + (12-1) = 27 bit CRC output for a 12 bit 

CRC */  

 

input [8:0]gp;        

 

reg [23:0]rem;   

 

/* Appending zeroes at the end of the message input */  

integer i,b,cnt=0;     

 

integer i,b,cnt=0;     

 

always@(msg or gp) 

begin 

cnt=0; 

for(i=23;i>=0;i=i-1)        /* i=27 for a 12 bit CRC */ 

 

begin 

if(i<8)                     /* i<12 for a 12 bit CRC */ 

 

 

 

rem[i]=1'b0; 

else 

rem[i]=msg[i-8];         /* [i-12] for a 12 bit CRC */ 

 

end 

begin: blk 

for(i=23;i>=8;i=i-1)        /* i=27;i>=12 for a 12 bit CRC */ 

 

begin 

if(rem[i]) 

begin 

b=i; 

disable blk; 

end 

end 

end 

end 

 

/* Finding the position of logic 1 bit (i.e. b) from left of 

appended message */ 

 

always@(cnt) 

begin: blk2 

for(i=23;i>=8;i=i-1) 

begin                                 

 

/* i=27;i>=12 for a 12 bit CRC */ 

 

if(rem[i]) 

begin 

b=i; 

disable blk2; 

end 

end 

end 

 

/* Performing bitwise XOR */ 

always@(b) 

begin: blk3 

if(rem[23-:16]==16'b0)            /* rem[27-:16] for 12 bit 

CRC */ 

 

disable blk3; 

else 

begin 

rem[b-:9]=rem[b-:9]^gp[8:0];    
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/*rem[b-:13], gp[12:0] for a 12 bit CRC*/  

 

cnt=cnt+1; 

end 

end 

 

assign crcf[23-:16]=msg[15-:16];   /*crcf[27-:16] for a 12 bit 

CRC */ 

 

assign crcf[7:0]=rem[7:0];                

 

endmodule 

4.2. Modelsim output Waveform  

Figure 2. Verilog code output waveform. 

In the above output,  

• gp (generator polynomial – 8th degree (9 bits))  

  = 1x8 + 0x7 + 1x6 + 1x5 + 1x4 + 1x3 + 0x2 + 1x1 + 1x0   

       = 101111011 

• msg (input message coefficients – 16 bit) = 

1101001110110010  

• rem(remainder) = 0000000000000000 11000001 

• crcf (CRC output i.e. input message appended with 

rem (check bits)) 

= 1101001110110010 11000001 

5. Analytical Solution 

 

1101001110110010 00000000   (A) 

101111011    (B) 

------------------------------------- 

0110111000110010 00000000  (C) 

0101111011 

-------------------------------------  

0011000011110010 00000000 

00101111011 

-------------------------------------  

0001111110010010 00000000 

000101111011 

------------------------------------- 

0000100000100010 00000000 

0000101111011 

------------------------------------- 

0000001111111010 00000000 

000000101111011 

------------------------------------- 

0000000100001100 00000000 

0000000101111011 

------------------------------------- 

0000000001110111 00000000 

0000000001011110 11 

------------------------------------- 

0000000000101001 11000000 

 

      101111 011 

------------------------------------- 

0000000000000110 10100000 

0000000000000101 111011 

------------------------------------- 

0000000000000011 01001100 

0000000000000010 1111011 

------------------------------------- 

0000000000000001 10111010 

0000000000000001 01111011 

------------------------------------- 

0000000000000000 11000001  (D) 

 

 

 

Remainder (Check Bits) = 11000001 

(A) Message with zero padding 

(B) gp 

(C)Message xor gp 

(D)Remainder 

 

 

 

CRC encoded output = 

 

 

           1101001110110010               11000001  

      

      

 

 

       Message bits                    Check Bits 

 

 

6. CRC WITH Error Verification Using 

Remainder 

 

6.1. Verilog Code 

 

/* 

 working: 

 

 1.) obtaining check bit for given msg input   

 2.) passing message without error and verifying  

 3.) passing message with error and verifying 

 4.) assigning a new signal output= 

0; if no error 

1; if error 

     

1010101010101100  

101111011     

      

*/ 

 

module 

crc(msg,msg_retrieved,gp,crcf_msg,crcf_retrieved,error);

http://www.ijsrem.com/
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 input [15:0]msg;  

 input [15:0]msg_retrieved;  

 output error; 

 reg error; 

 

/* 16 bit message input */  

 

 input [8:0]gp;  

 

/*using same gp for msg and msg_retrieved 

 

[12:0] to be used for a 13 bit generator polynomial(12 bit 

CRC ) */ 

 output [23:0]crcf_msg; 

 output [23:0]crcf_retrieved;  

 

/* 16 + (8-1) = 23 bit CRC output for an 8 bit CRC and 6 + 

(12-1) = 27 bit CRC output for a 12 bit CRC */   

 

 reg [23:0]rem; 

 reg [23:0]rem1;  

 integer i,b,cnt=0,cnt1=0;  

  

/*Appending zeroes at the end of the message input */   

 

 always@(msg or gp) 

 begin 

 cnt=0; 

 for(i=23;i>=0;i=i-1) 

 

/* i=27 for a 12 bit CRC */  

 begin if(i<8)        

 

/* i<12 for a 12 bit CRC */  

  

 rem[i]=1'b0; 

 else rem[i]=msg[i-8];   

 

/* [i-12] for a 12 bit CRC */ 

  

 cnt=cnt+1; 

 end 

 end  

 

/* Finding the position of logic 1 bit (i.e. b) from left of 

appended message */  

 

 always@(cnt)  

 begin: blk1 

 for(i=23;i>=8;i=i-1)  

 begin                                 

 

/* i=27;i>=12 for a 12 bit CRC */  

 

 if(rem[i])  

 begin b=i;  

 disable blk1;  

 end  

 end 

 end  

 

/* Performing bitwise XOR */  

 

always@(b)  

begin: blk2 

     if(rem[23-:16]==16'b0)    

/* rem[27-:16] for 12 bit CRC */ 

 disable blk2;  

 else 

 begin rem[b-:9]=rem[b-:9]^gp[8:0];    

 

/* rem[b-:13], gp[12:0] for a 12 bit CRC*/  

 

 cnt=cnt+1;  

 end 

 end  

assign crcf_msg[23-:16]=msg[15:16]; 

 

/*crcf[27-:16] for a 12 bit CRC */  

 

assign crcf_msg[7:0]=rem[7:0];   

 

/*same process for msg_retrieved  

Appending zeroes at the end of the message input */   

 

 always@(msg_retrieved or gp) 

 begin 

 cnt1=0; 

 for(i=23;i>=0;i=i-1) 

 

/* i=27 for a 12 bit CRC */  

 

 begin 

   if(i<8) 

   rem1[i]=rem[i];  

   else  

   begin 

     rem1[i]=msg_retrieved[i-8];   

 

/* [i-12] for a 12 bit CRC */ cnt1=cnt1+1; 

 end 

 end 

 end 

 

/* Finding the position of logic 1 bit (i.e. b) from left of 

appended message */  

 

always@(cnt1)  

begin: blk3 

for(i=23;i>=8;i=i-1)  

begin                                 

 

/* i=27;i>=12 for a 12 bit CRC */  

 

if(rem1[i])  

begin b=i;  

disable blk3;  

end  

end 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

           Volume: 04 Issue: 11 | Nov -2020                                                                                                      ISSN: 2582-3930                                                                                                                                               

 

© 2020, IJSREM      | www.ijsrem.com                                                                                                                                              |        Page 7 
 

end  

 

/* Performing bitwise XOR */  

 

always@(b)  

begin: blk4 

 if(rem1[23:0]==24'b0)    

 

/* rem[27-:16] for 12 bit CRC */ 

 disable blk4;  

 else if(b>=8) 

 begin rem1[b-:9]=rem1[b-:9]^gp[8:0];    

 

/* rem[b-:13], gp[12:0] for a 12 bit CRC*/  

 

 cnt1=cnt1+1;  

 end 

 end  

 assign crcf_retrieved[23-:16]=msg_retrieved[15-:16]; 

 

/*crcf[27-:16] for a 12 bit CRC */  

assign crcf_retrieved[7:0]=rem1[7:0]; 

/*Error verification*/ 

always@(crcf_msg & crcf_retrieved) 

begin 

if(rem1[23:0]!=24'b0) 

assign error=1; 

else 

assign error=0; 

end 

endmodule 

 

6.2. Modelsim output Waveforms  

 

Figure 3. Verilog code output waveform with no error in 

message received variable 

 

 

Figure 4. Verilog code output waveform with Error in 

received message, last 3 bits as 111 instead of 010 

 

7. Obtaining RTL Schematic 

 

RTL schematic cannot be formed when a variable which is 

not pre-initialized cannot have an operation upon itself. Here 

the ‘rem’ variable is being used in initialization in the first 

always block {always (msg, gp)}, ‘rem=msg[i-8]’ and in the 

next always block below it, i.e. (always@(b), ‘rem[b-:9] 

=rem[b-:9] ^gp [8:0]’. Since all always blocks run parallel, the 

RTL designer gives an error as rem is not initialized “rem<23> 

is already riven by msg <15>” 

To overcome this problem, we used to variables of net and 

reg datatype. The output variable would be of reg type and the 

other would be net type. 

7.1. Code A: Simpler Verilog code 

module crc(msg,gp,crf); 

input [15:0]msg; // 16bit i/p 

input [8:0]gp; // 8 bit crc 

output [23:0] crf; // 16+9-1 = 24 bits 

//reg [23:0] crcf; 

wire [23:0] crcf; 

reg [8:0] rem; 

integer i,cnt,b,c,ct; 

reg [23:0] a; 

// appending zeros 

always @ (msg,gp) 

begin 

for(i=23;i>=0;i=i-1) 

begin 

if(i>8) 

a[i] = msg[(i-8)]; 

else 

a[i] = 0; 

end 

end 

 

//finding leftmost 1 and then find no. of xors and xor it 

always @ (msg,gp) 

begin : blk1 

c=23;   // c is 1 leftmost 

for(i=23;i>=0;i=i-1) 

begin : blk3 

if(a[i]) 

 

 

begin:blk2 

for(cnt=0;cnt<=14;cnt=cnt+1) 

begin 

 

if(cnt==(c-8)) 

disable blk2; 

b=c; 

rem = a[b-:9]^gp[8:0]; 

b=b-1; 

 

 

end 

end 

 

 

c=c-1; 
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if(c<=8) 

disable blk1; 

end 

 

 

end 

 

assign crcf[23:9]=msg[15:0];      

assign crcf[8:0]=rem[8:0];                

assign crf = crcf; 

endmodule 

 

The drawback of above code: But this code runs for finite 

number of times. To make it more volatile and reduce its 

computation time, we may change the code as following: 

7.2. Code B: Adaptive Verilog code for CRC 

`timescale 1ns / 1ps 

////////////////////////////////////////////////////////////////////////////////// 

// Company: Bangalore Institute of Technology 

// Engineer: Neelanjan Goswami, Moka Saicharan & Mohd 

Ahmed Siddique 

//  

// Create Date:    17:39:46 03/26/2020  

// Design Name:    CRC 

// Module Name:    crc (Cyclic Redundancy Check)  

// Project Name:   CRC 

// Target Devices:  

// Tool versions:  

// Description:  

// 

// Dependencies:  

// 

// Revision:  

// Revision 0.01 - File Created 

// Additional Comments:  

//  

 

// NEELANJAN, SAICHARAN AND AHMED 

////////////////////////////////////////////////////////////////////////////////// 

module crc(msg,gp,crf); 

input [15:0]msg; // 16bit i/p 

input [8:0]gp; // 8 bit crc 

output [23:0] crf; // 16+9-1 = 24 bits 

 

//reg [23:0] crcf; 

wire [23:0] crcf; 

reg [8:0] rem; 

integer i,cnt,b,c,ct; 

reg [23:0] a; 

 

// appending zeros 

always @ (msg,gp) 

begin 

for(i=23;i>=0;i=i-1) 

begin 

if(i>8) 

a[i] = msg[(i-8)]; 

else 

a[i] = 0; 

end 

 

/*Finding 1, then XORing with gp, till 9th bit*/ 

for(i=23;i>=8;i=i-1) 

begin 

 

if(a[i]) 

begin 

a[i-:9]=a[i-:9]^gp[8:0]; 

end 

 

end 

end 

 

 

assign crcf[23-:16]=msg[15:0];      

assign crcf[7:0]=a[7:0];                

assign crf = crcf; 

endmodule 

 

 

8. Schematics 

 

8.1. RTL Schematic 

 

Code A: - 
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Code B: -  
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8.2. Technology Schematic 

 

Code B: 

 

 

 
 

 

 

 

 

 

 

Code A: 

 

 

 
 

 

 

 

 

 

 

Simplification: -  

 

 

For scaling down, a 2-bit CRC’s schematics too are shown: - 

i.e. 5-bit Message bits and 3-bit Check bits 

 

 

8.3. RTL Schematic 
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8.4. Technology Schematic 

 
 

 
 

9. Applications 

1. A multiple bits error correction method based on 

cyclic redundancy check codes. 

2. In the RFID system, the application of error 

correction. 

3. Detection and recovery of memory-resident 

corrupted data of mobile communication billing 

system based on cyclic redundancy check. 

4. Enhanced error correction for satellite navigation 

message based on CRC codes. 

5. Study of CRC-p Code Efficiency and Evaluation of 

Optimal CRC Code for VHF Maritime Ad-hoc 

wireless network communications. 

 

10. CONCLUSIONS 

A Verilog code for an 8/12-bit cyclic redundancy check was 

created and tested. This code could also be extended for any 

number bit cyclic redundancy check by changing the bit size 

of registers taken as message input and generator polynomial 
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in the Verilog code. Different versions of the Verilog code for 

the same were also provided that could be used appropriately 

by the designer/student. Our study mainly emphasizes on 

bringing the operation of a CRC (Cyclic Redundancy Check) 

onto a hardware by writing a Verilog code that performs that 

very operation. The code was then translated into a basic 

circuit level representation with the use of RTL (Register 

Transfer Level) tools provided by Xilinx. Our study and code 

may or may not be the most efficient or compact hardware for 

a CRC but was rather done to make the viewers reading this 

paper understand the simplicity and the use of basic Verilog 

language to bring any real-life hardware/circuit for any kind 

of operation/application into reality. Software like Xilinx 

provide an easy to understand interface and variety of options 

to execute and implement any given Verilog code through 

simulations and RTL schematics respectively. They have 

single handedly brought the time and expense required to 

create any hardware/electronic circuits through the use of 

popular and easy to understand languages like Verilog, VHDL 

and technologies like RTL. Our main motive through this 

paper is to show this very creation of a CRC circuit/hardware 

through the steps we followed: 

• Starting by understanding the need and the essence 

of this hardware, 

• Analyzing the operation performed by this hardware, 

• Preparing a model code with the use of simple 

Verilog statements, 

• Generalizing the code and making it more flexible, 

• Testing it through simulations (provided by 

ModelSim), 

• Finally bringing the hardware into reality through the 

use of RTL technology. 

 

11. System Configuration 
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